Software implementation of binary elliptic curves: impact of the carry-less multiplier on scalar multiplication

J. Taverne⁰, A. Faz-Hernández¹, D. F. Aranha², F. Rodríguez-Henríquez¹, D. Hankerson³, J. López²

⁰Université Lyon 1 - ISFA - France ¹CINVESTAV - IPN - México ²Universidad de Campinas - Brazil ³Auburn University - USA

CHES - Nara - Japan September 29th 2011

・ロト ・雪ト ・雪ト ・ヨト

Outline of the talk

1 Introduction

- 2 Algorithms and implementation
 - Binary field arithmetic
 - Elliptic curves arithmetic
 - Scalar multiplication

3 Results

Outline of the talk

1 Introduction

Algorithms and implementation
 Binary field arithmetic

- Elliptic curves arithmetic
- Scalar multiplication

3 Results

- Julio López, Ricardo Dahab: Fast Multiplication on Elliptic Curves over GF(2^m) without Precomputation
- A whole section devoted to Implementation of Elliptic Curve Cryptosystems
- Two sections on ECC : Elliptic Curve Algorithms and Side Channel Attacks on Elliptic Curve Cryptanalysis
- Three sections on Elliptic Curve Cryptography
- · · · ·
- Three papers on efficient/fast ECC implementation

- Julio López, Ricardo Dahab: Fast Multiplication on Elliptic Curves over GF(2^m) without Precomputation
- A whole section devoted to Implementation of Elliptic Curve Cryptosystems
- Two sections on ECC : Elliptic Curve Algorithms and Side Channel Attacks on Elliptic Curve Cryptanalysis
- Three sections on Elliptic Curve Cryptography
- ····
- Three papers on efficient/fast ECC implementation

- Julio López, Ricardo Dahab: Fast Multiplication on Elliptic Curves over GF(2^m) without Precomputation
- A whole section devoted to Implementation of Elliptic Curve Cryptosystems
- Two sections on ECC : Elliptic Curve Algorithms and Side Channel Attacks on Elliptic Curve Cryptanalysis
- Three sections on Elliptic Curve Cryptography
- ····
- Three papers on efficient/fast ECC implementation

- Julio López, Ricardo Dahab: Fast Multiplication on Elliptic Curves over GF(2^m) without Precomputation
- A whole section devoted to Implementation of Elliptic Curve Cryptosystems
- Two sections on ECC : Elliptic Curve Algorithms and Side Channel Attacks on Elliptic Curve Cryptanalysis
- Three sections on Elliptic Curve Cryptography
- ····
- Three papers on efficient/fast ECC implementation

Scalar multiplication implementation at CHES

· ...

- Julio López, Ricardo Dahab: Fast Multiplication on Elliptic Curves over GF(2^m) without Precomputation
- A whole section devoted to Implementation of Elliptic Curve Cryptosystems
- Two sections on ECC : Elliptic Curve Algorithms and Side Channel Attacks on Elliptic Curve Cryptanalysis
- Three sections on Elliptic Curve Cryptography
- Three papers on efficient/fast ECC implementation

- Julio López, Ricardo Dahab: Fast Multiplication on Elliptic Curves over GF(2^m) without Precomputation
- A whole section devoted to Implementation of Elliptic Curve Cryptosystems
- Two sections on ECC : Elliptic Curve Algorithms and Side Channel Attacks on Elliptic Curve Cryptanalysis
- Three sections on Elliptic Curve Cryptography
- ····
- Three papers on efficient/fast ECC implementation

Intel[®] Carry-Less Multiplication Instruction

- Available since Westmere architecture [32nm], PCLMULQDQ instruction performs a multiplication of two 64-bit operands without carry bits. Its latency ranges from 10 to 15 clock cycles (8 to 14 in Sandy Bridge).
- Unlike Westmere, new Sandy Bridge architecture provides three-operand code for this instruction.

Impact on the field arithmetic assumptions

Mul in $\mathbb{F}_{2^{233}}$	comb method (LD)	Karatsuba (CMUL)	Д
Westmere i5	256 cc *	128 cc *	

* according to our experimentations

Impact on the ratios of multiplication with other operations:

- Mul/Sq, Mul/Sqrt
- Inv/Mul
- Quadratic solver/Mul

Consequences on the elliptic curves arithmetic:

ementation of binary elliptic curves: impact of the carry-less multiplier on scalar multiplication

CHES 2011 6 / 30

HALVING ???

Impact on the field arithmetic assumptions

Mul in $\mathbb{F}_{2^{233}}$	comb method (LD)	Karatsuba (CMUL)	
Westmere i5	256 cc *	128 cc *	

* according to our experimentations

Impact on the ratios of multiplication with other operations:

- Mul/Sq, Mul/Sqrt
- Inv/Mul
- Quadratic solver/Mul

Consequences on the elliptic curves arithmetic:

oftware implementation of binary elliptic curves: impact of the carry-less multiplier on scalar multiplication

CHES 2011 6 / 3

HALVING ???

Motivation

- From the point of view of software implementations binary elliptic curves have almost always be considered [much] slower than prime field multiplications.
- Until now, little attention has been put on multi-core implementation of a single elliptic curve scalar multiplication

Motivation

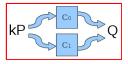
- From the point of view of software implementations binary elliptic curves have almost always be considered [much] slower than prime field multiplications.
- Until now, little attention has been put on multi-core implementation of a single elliptic curve scalar multiplication

$$k_0 P_0 \Longrightarrow \underbrace{c_0} Q_0$$
$$k_1 P_1 \Longrightarrow \underbrace{c_1} Q_1$$

Motivation

- From the point of view of software implementations binary elliptic curves have almost always be considered [much] slower than prime field multiplications.
- Until now, little attention has been put on multi-core implementation of a single elliptic curve scalar multiplication

$$k_0 P_0 \Longrightarrow \underbrace{c_0} Q_0$$
$$k_1 P_1 \Longrightarrow \underbrace{c_1} Q_1$$



Our contribution

- Squaring and square-root are not negligible anymore with respect to multiplication
- Half-trace is computed at the same cost as multiplication
- Fastest single-core implementation of a single scalar multiplication on various binary curves at the 112- 128-192-bit security levels
- Efficient multi-core implementation of a single scalar multiplication achieving an almost 2 factor of acceleration from algorithm analysis and 1.46 to 1.72 in practice

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Outline of the talk

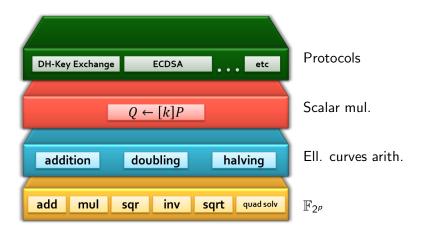
1 Introduction

- 2 Algorithms and implementation
 - Binary field arithmetic
 - Elliptic curves arithmetic
 - Scalar multiplication

3 Results

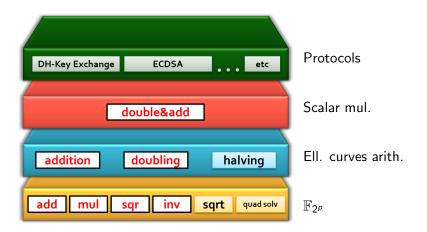
Binary field arithmetic Elliptic curves arithmetic Icalar multiplication

Structure



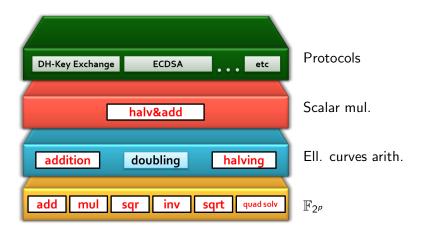
Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Structure



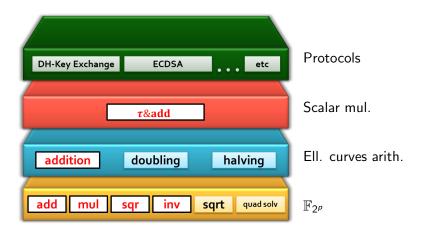
Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Structure



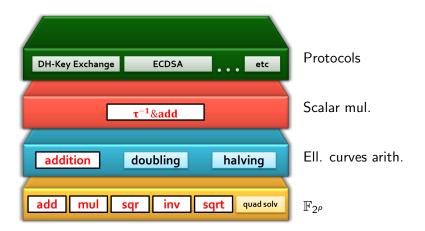
Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Structure



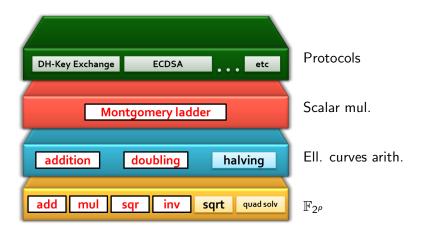
Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Structure



Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Structure



Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Outline of the talk

I Introduction

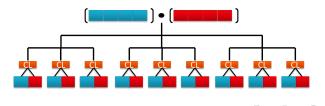
Algorithms and implementation
 Binary field arithmetic
 Elliptic curves arithmetic
 Scalar multiplication

3 Results

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Multiplication

- The maximum amount of work should be done in registers to avoid costly load/store instructions
- The multiplier should have 128-bit granularity to benefit from cheap xor and shift-by-byte instructions
- \blacksquare Minimal overhead when implementing Karatsuba in \mathbb{F}_{2^p}



Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Squaring and square-root

- Vectorized implementations with simultaneous table lookups through byte shuffling instructions [Aranha et al., LATINCRYPT 10'] improved by a careful reordering of the instructions
- Multi-squaring = exponentiation to 2^k. The method uses only xor operations, taking the values from a large precomputed table. Although very memory demanding, this multi-squaring function brings substantial speed improvements.

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Quadratic solver $z^2 + z = c$

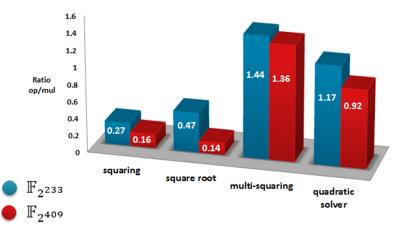
Algorithm 1 Solve $x^2 + x = c$ [Avanzi, IACR ePrint 07']

- Free memory environment [desktop/server], not focused on memory minimization
- Step 5 benefits from the vectorization in the same way as square-root

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Ratios





Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Outline of the talk

1 Introduction

- Algorithms and implementationBinary field arithmetic
 - Elliptic curves arithmetic
 - Scalar multiplication

3 Results

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Elliptic curves arithmetic

Set of curves used in this work:

- NIST random binary elliptic curves: B-233, B-409
- NIST Koblitz curves: K-233, K-409
- Binary Edwards elliptic curve: **curve2251** $y^2 + xy = x^3 + (z^{13} + z^9 + z^8 + z^7 + z^2 + z + 1)$

Op.	LD	Kim&Kim *	Exp. result in $\mathbb{F}_{2^{233}}$
Point Doubling	4M, 5S	4M, 5S, -2Red	5.5M
Point Addition	8M, 5S	8M, 4S, -3Red	9M

* [Kim et al., IACR ePrint 07']

Op.	Theoretical cost	Exp. result in $\mathbb{F}_{2^{233}}$	
Point Halving	1M, 1QS, 1SQRT	3.3M	

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Elliptic curves arithmetic

Set of curves used in this work:

- NIST random binary elliptic curves: B-233, B-409
- NIST Koblitz curves: K-233, K-409
- Binary Edwards elliptic curve: **curve2251** $y^2 + xy = x^3 + (z^{13} + z^9 + z^8 + z^7 + z^2 + z + 1)$

Op.	LD	Kim&Kim *	Exp. result in $\mathbb{F}_{2^{233}}$
Point Doubling	4M, 5S	4M, 5S, -2Red	5.5M
Point Addition	8M, 5S	8M, 4S, -3Red	9M

* [Kim et al., IACR ePrint 07']

Op.	Op. Theoretical cost Exp. result in \mathbb{F}_2	
Point Halving	1M, 1QS, 1SQRT	3.3M

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Outline of the talk

1 Introduction

2 Algorithms and implementation

- Binary field arithmetic
- Elliptic curves arithmetic
- Scalar multiplication

3 Results

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Scalar multiplication

Implementation methods and features:

Curve	Method	Parallel	SCP *
random	Double&add, Halve&add	OK	Х
Koblitz	$ au$ &add, $ au^{-1}$ &add	OK	Х
curve2251	Montgomery laddering	Х	OK

* SCP = Side-Channel Protected

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Scalar multiplication

Implementation methods and features:

Curve	Method	Parallel	SCP *
random	Double&add, Halve&add	OK	Х
Koblitz	$ au$ &add, $ au^{-1}$ &add	OK	Х
curve2251	Montgomery laddering	Х	OK

- * SCP = Side-Channel Protected
- Today's focus = random curves

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Sequential algorithm

Algorithm 2 Double-and-add scalar multiplication

Input: ω , k, $P \in E(\mathbb{F}_{2^m})$ of odd order r**Output:** kP 1: Obtain the representation $\omega NAF(k) = \sum_{i=0}^{t} k_i 2^i$ 2: Compute $P_i = iP$ for $i \in I = \{1, 3, \dots, 2^{\omega-1} - 1\}$ 3: $Q \leftarrow O$ 4: for i = t downto 0 do 5: $Q \leftarrow 2Q$ 6: if $k_i' > 0$ then 7: $Q \leftarrow Q + P_k$ else if $k_i' < 0$ then 8: $Q \leftarrow Q - P_{-k}$ 9: 10: return Q

$$cost = pre-comp + \frac{t}{\omega+1}PA + t.PD$$

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Sequential algorithm

Algorithm 3 Halve-and-add scalar multiplication [Fong et al., IEEE TC 04']

Input: ω , k, $P \in E(\mathbb{F}_{2^m})$ of odd order rOutput: kP 1: Perform scalar recoding: $k' = 2^t k \mod r$ where $t = \lceil \log_2 r \rceil$ 2: Obtain the representation $\omega \text{NAF}(k')/2^t = \sum_{i=0}^t k'_i 2^{i-t}$ 3: Initialize $Q_i \leftarrow O$ for $i \in I = \{1, 3, ..., 2^{\omega - 1} - 1\}$ 4: for i = t downto 0 do 5: if $k'_i > 0$ then 6: $Q_{k'_i} \leftarrow Q_{k'_i} + P$ 7: else if $k_i' < 0$ then $Q_{-k'_i} \leftarrow Q_{-k'_i} - P$ 8: $P \leftarrow P/2$ 9: 10: return $Q \leftarrow \sum_{i \in I} iQ_i$

$$cost = \frac{t}{\omega + 1} PA + t.PH + post-comp$$

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Parallel formulation

Formula for parallel implementation on random binary curves:

$$kP = (k'_{t}2^{t-n} + \dots + k'_{n})P + (k'_{n-1}2^{-1} + \dots + k'_{0}2^{-n})P$$

In other words:

$$kP = \sum_{i=n}^{t} k_i' 2^{i-n} P + \sum_{i=0}^{n-1} k_i' 2^{-n+i} P$$

Software implementation of binary elliptic curves: impact of the carry-less multiplier on scalar multiplication CHES 2011 22/30

Binary field arithmetic Elliptic curves arithmetic Scalar multiplication

Parallel algorithm

Algorithm 4 Double-and-add, halve-and-add scalar multiplication: parallel

Binary field arithmetic Elliptic curves arithmetic Icalar multiplication

Parallel algorithm

{Barrier}

Algorithm 5 Double-and-add, halve-and-add scalar multiplication: parallel

Input: ω , scalar $k, P \in E(\mathbb{F}_{2^m})$ of odd order r, constant $n \approx \frac{t}{2}$ **Output:** kP

1: Compute $P_i = iP$ for $i \in I = \{1, 3, \dots, 2^{\omega-1} - 1\}$ 2: $Q_0 \leftarrow \mathcal{O}$

- 3: Recode: $k' = 2^n k \mod r$ and obtain rep $\omega \text{NAF}(k')/2^n = \sum_{i=0}^t k'_i 2^{i-n}$
- 4: Initialize $Q_i \leftarrow \mathcal{O}$ for $i \in I$

Binary field arithmetic Eliptic curves arithmetic Icalar multiplication

Parallel algorithm

Algorithm 6 Double-and-add, halve-and-add scalar multiplication: parallel

- 1: Compute $P_i = iP$ for $i \in I = \{1, 3, \dots, 2^{\omega-1} - 1\}$ 2: $Q_0 \leftarrow \mathcal{O}$ {Barrier}
- 5: for i = t downto n do
- 6: $Q_0 \leftarrow 2Q_0$
- 7: **if** $k'_i > 0$ **then**
- 8: $Q_0 \leftarrow Q_0 + P_{k'_i}$
- 9: else if $k'_i < 0$ then
- 10: $Q_0 \leftarrow Q_0 P_{-k_i'}$

- 3: Recode: $k' = 2^n k \mod r$ and obtain rep $\omega \text{NAF}(k')/2^n = \sum_{i=0}^t k'_i 2^{i-n}$
- 4: Initialize $Q_i \leftarrow \mathcal{O}$ for $i \in I$

Binary field arithmetic Eliptic curves arithmetic Icalar multiplication

Parallel algorithm

Algorithm 7 Double-and-add, halve-and-add scalar multiplication: parallel

- 1: Compute $P_i = iP$ for $i \in I = \{1, 3, \dots, 2^{\omega-1} - 1\}$ 2: $Q_0 \leftarrow \mathcal{O}$ {Barrier}
- 5: for i = t downto n do
- $6: \quad Q_0 \leftarrow 2Q_0$
- 7: **if** $k'_i > 0$ **then**
- 8: $Q_0 \leftarrow Q_0 + P_{k'_i}$
- 9: else if $k'_i < 0$ then
- 10: $Q_0 \leftarrow Q_0 P_{-k_i'}$

- 3: Recode: $k' = 2^n k \mod r$ and obtain rep $\omega \text{NAF}(k')/2^n = \sum_{i=0}^t k'_i 2^{i-n}$
- 4: Initialize $Q_i \leftarrow \mathcal{O}$ for $i \in I$

Binary field arithmetic Eliptic curves arithmetic Icalar multiplication

Parallel algorithm

Algorithm 8 Double-and-add, halve-and-add scalar multiplication: parallel

Input: ω , scalar $k, P \in E(\mathbb{F}_{2^m})$ of odd order r, constant $n \approx \frac{t}{2}$ **Output:** kP

- 1: Compute $P_i = iP$ for $i \in I = \{1, 3, \dots, 2^{\omega-1} - 1\}$ 2: $Q_0 \leftarrow \mathcal{O}$ {Barrier}
- 5: for i = t downto n do 6: $Q_0 \leftarrow 2Q_0$ 7: if $k'_i > 0$ then 8: $Q_0 \leftarrow Q_0 + P_{k'_i}$ 9: else if $k'_i < 0$ then
- 10: $Q_0 \leftarrow Q_0 P_{-k'_i}$ {Barrier}

- 3: Recode: k' = 2ⁿk mod r and obtain rep ωNAF(k')/2ⁿ = ∑_{i=0}^t k'_i2ⁱ⁻ⁿ
 4: Initialize Q_i ← O for i ∈ I

Software implementation of binary elliptic curves: impact of the carry-less multiplier on scalar multiplication CHES 2011 23/30

Binary field arithmetic Eliptic curves arithmetic Icalar multiplication

Parallel algorithm

Algorithm 9 Double-and-add, halve-and-add scalar multiplication: parallel

- 1: Compute $P_i = iP$ for $i \in I = \{1, 3, \dots, 2^{\omega-1} - 1\}$ 2: $Q_0 \leftarrow \mathcal{O}$ {Barrier}
- 5: for i = t downto n do 6: $Q_0 \leftarrow 2Q_0$ 7: if $k'_i > 0$ then
- 8: $Q_0 \leftarrow Q_0 + P_{k'_i}$
- 9: else if $k'_i < 0$ then 10: $Q_0 \leftarrow Q_0 - P_{-k'_i}$ {Barrier}
- 17: return $Q \leftarrow Q_0 + \sum_{i \in I} iQ_i$

- 3: Recode: k' = 2ⁿk mod r and obtain rep ωNAF(k')/2ⁿ = ∑^t_{i=0} k'_i2ⁱ⁻ⁿ
 4: Initialize Q_i ← O for i ∈ I

Outline of the talk

1 Introduction

- Algorithms and implementation
 Binary field arithmetic
 - Elliptic curves arithmetic
 - Scalar multiplication

3 Results

Benchmark environment

- Timings validated with SUPERCOP ["turbo" mode disabled] from eBACS: http://bench.cr.yp.to
- Intel Westmere and Sandy Bridge families [respectively Core i5-660 and Core i7-2600K]
- Random scalar and unknown point scenario

Benchmark

■ Timings in 10^3 clock cycles, (SC)=Single-Core, (MC)=Multi-Core

112-bit security level

Implementation	System	Finite Field	Westmere	Sandy Bridge
NIST - K-233 (SC)	au&add (5 $ au$ -NAF)	[₽] 2233	89	67.8
NIST - B-233 (SC)	Halve&add (4-NAF)	F2233	182	157
NIST - K-233 (MC)	$(\tau \tau)$ &add (5 τ -NAF)	<i>F</i> ₂₂₃₃	58	46.5
NIST - B-233 (MC)	(Dbl,Halve)&add (4-NAF)	F2233	116	100

128-bit security level

Implementation	System	Finite Field	Westmere	Sandy Bridge
curve2251 (SC)	Montgomery	F ₂₂₅₁	282	225

192-bit security level

Implementation	System	Finite Field	Westmere	Sandy Bridge
NIST - K-409 (SC)	au&add (5 $ au$ -NAF)	F ₂ 409	321	255.6
NIST - B-409 (SC)	Halve&add (4-NAF)	F2409	705	557
NIST - K-409 (MC)	$(\tau \tau)$ &add (5 τ -NAF)	F2409	191	148.8
NIST - B-409 (MC)	(Dbl,Halve)&add (4-NAF)	F2409	444	349

<ロト < 部 > < 注 > < 注 > の < 0</p>

Benchmark

■ Timings in 10^3 clock cycles, (SC)=Single-Core, (MC)=Multi-Core

112-bit security level

Implementation	System	Finite Field	Westmere	Sandy Bridge
NIST - K-233 (SC)	τ &add (5 τ -NAF)	[₽] 2233	89	67.8
NIST - B-233 (SC)	Halve&add (4-NAF)	F2233	182	157
NIST - K-233 (MC)	(au au)&add (5 $ au$ -NAF)	F ₂₂₃₃	58	46.5 (×1.46)
NIST - B-233 (MC)	(Dbl,Halve)&add (4-NAF)	F2233	116	100 (×1.57)

128-bit security level

Implementation	System	Finite Field	Westmere	Sandy Bridge
curve2251 (SC)	Montgomery	F ₂ 251	282	225

192-bit security level

Implementation	System	Finite Field	Westmere	Sandy Bridge
NIST - K-409 (SC)	τ &add (5 τ -NAF)	F2409	321	255.6
NIST - B-409 (SC)	Halve&add (4-NAF)	F2409	705	557
NIST - K-409 (MC)	(au au)&add (5 $ au$ -NAF)	[₽] 2409	191	148.8 (×1.72)
NIST - B-409 (MC)	(Dbl,Halve)&add (4-NAF)	[₽] 2409	444	349 (×1.6)

oftware implementation of binary elliptic curves: impact of the carry-less multiplier on scalar multiplication CHES 2011 27,

Comparison with the literature

128-bits security level. Timings validated with SUPERCOP except for (*)

Implementation	System	Finite Field	10 ³ clock cycles
Bernstein (*)	curve2251 Core 2 Quad Q6600	binary field: $\mathbb{F}_{2^{251}}$	314.3
Galbraith, Lin, Scott	gls1271 Intel Xeon E5620 (WSM)	prime field: $\mathbb{F}_{(2^{127}-1)^2}$	278.3
This work	curve2251 Intel Xeon E5620 (WSM)	binary field: $\mathbb{F}_{2^{251}}$	263.1
Bernstein <i>et al.</i>	curve25519 Intel Xeon E5620 (WSM)	prime field: $\mathbb{F}_{2^{255}-19}$	226.9
This work	curve2251 Intel Core i7-2600K (SB)	binary field: $\mathbb{F}_{2^{251}}$	225
Bernstein <i>et al.</i>	curve25519 Intel Core i7-2600K (SB)	prime field: $\mathbb{F}_{2^{255}-19}$	193.8
Hu, Longa, Xu (*)	Jac128gls4 Intel Core i7-2600M (SB)	prime field: $\mathbb{F}_{(2^{128}-40557)^2}$	120

Concluding remarks

- This work achieved an almost 2 factor of acceleration for parallel algorithms. However in practice this factor is up to 1.72 in our best implementation.
- Future improvement in parallelization management could improve this factor.
- If the latency would be reduced to 3 clock cycles as the instruction for integer, binary would have great chance to win against prime fields.
- AMD Bulldozer release is coming: will AMD's carry-less multiplication instruction latency be lower?
- Last update: scalar multiplication has been computed in 148.7 × 10³ clock cycles using NIST recommended elliptic curve K-283. Moreover parallelized version takes 95.5 × 10³.

Thank you!

Software implementation of binary elliptic curves: impact of the carry-less multiplier on scalar multiplication CHES 2011 30 / 30